第3章直线与方程4.示范教案(3.2.2 直线的两点式方程)高中数学必修2教师教案.doc

想预览更多内容,点击预览全文

申明敬告:

本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。如果您已付费下载过本站文档,您可以点击这里二次下载

文档介绍

3.2.2 直线的两点式方程

整体设计

教学分析 本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形.直线方程的两点式可由点斜式导出.若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程.由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式.

三维目标

1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.培养学生数形结合的数学思想,为今后的学习打下良好的基础.

2.了解直线方程截距式的形式特点及适用范围,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.

重点难点

教学重点:直线方程两点式和截距式.

教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形.

课时安排

1课时

教学过程

导入新课

思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:

(1)已知直线l经过两点P1(1,2),P2(3,5),求直线l的方程.

(2)已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程.

思路2.要学生求直线的方程,题目如下:

①A(8,-1),B(-2,4);

②A(6,-4),B(-1,2);

③A(x1,y1),B(x2,y2)(x1≠x2).

(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程)

这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?

推进新课

新知探究

您可能关注的文档

最近下载