青海《两角和与差的余弦(赵永利)》.doc

想预览更多内容,点击预览全文

申明敬告:

本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。如果您已付费下载过本站文档,您可以点击这里二次下载

文档介绍

课例:两角和与差的余弦

?

青海省西宁市第十中学 赵永利

教材:人教版普通高级中学教科书(必修)第一册(下)第四章三角函数第六节,共需3课时,本节课是第一课时。P34-36

一、教材分析:

㈠、地位和作用:

两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。

㈡、教学目标:

1、知识目标:

①、??????? 使学生了解平面内两点间距离公式的推导并熟记公式;

②、??????? 使学生理解两角和与差的余弦公式和诱导公式的推导;

③、??????? 使学生能够从正反两个方向运用公式解决简单应用问题。

2、能力目标:

①、培养学生逆向思维的意识和习惯;

②、培养学生的代数意识,特殊值法的应用意识;

③、培养学生的观察能力,逻辑推理能力和合作学习能力。

3、情感目标: ①、通过观察、对比体会公式的线形美,对称美; ②、培养学生不怕困难,勇于探索的求知精神。

(设计依据:建构主义理论认为,学生的能力培养不是单方面的知识教育,而应该是知识、能力、情感三维一体的一个完整体系,因此,我在教学中设计三方面的目标要求。其中知识目标是近期目标,另两个目标是远期目标。)

㈢、教学重、难点:

1、平面内两点间的距离公式的推导和应用是本节的一个重点;

2、两角和与差的余弦公式的推导和应用是本节的又一个重点,也是本节的一个难点。

(设计依据:平面内两点间的距离公式在本节课中是‘两角和余弦公式推导’的主要依据,在后继知识中也有广泛的应用,所以是本节的一个重点。由于 ‘两角和与差的余弦公式的推导和应用’对后几节内容能否掌握具有决定意义,在三角变换、三角恒等式的

您可能关注的文档

最近下载