《函数的零点与方程的解》示范公开课教学PPT课件【高中数学人教版】.pptx

想预览更多内容,点击预览全文

申明敬告:

本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己完全接受本站规则且自行承担所有风险,本站不退款、不进行额外附加服务;如果您已付费下载过本站文档,您可以点击这里二次下载

文档介绍

函数的零点与方程的解整体感知在“函数的应用(一)”中,通过一些实例,我们初步了解了建立函数模型解决实际问题的过程,学习了用函数描述客观事物变化规律的方法.本节先学习运用函数性质求方程近似解的基本方法(二分法),再结合实例,更深入地理解用函数构建数学模型的基本过程,学习运用模型思想发现和提出问题、分析和解决问题的方法.新知探究问题1 我们已经学习了用二次函数的观点认识一元二次方程,所以要判断一元二次方程是否有实数解,除了利用一元二次方程根的判别式,还可以利用二次函数.请回忆相关内容,说说从二次函数的观点,如何判断一元二次方程是否有实数解?从二次函数的观点来看,一元二次方程 的实数根就是相应二次函数 的零点,也就是二次函数 的图象与x轴的公共点的横坐标.新知探究问题2 类比一元二次方程的实数解和相应的二次函数的零点的关系,像 这样不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?类比二次函数的零点,也可以考虑函数 的零点,通过判断函数 的图象与x轴是否有公共点,来判断方程 是否有实数解.新知探究问题3 通过上面的讨论,能否将这种利用函数观点研究方程解的方法,推广到研究一般方程的解?可以将这种方法推广到研究一般方程的解.为此,与二次函数的零点一样,我们有必要给出函数零点的定义.定义:对于一般函数 ,我们把使 的实数x叫做函数 的零点(zero point).新知探究问题3 通过上面的讨论,能否将这种利用函数观点研究方程解的方法,推广到研究一般方程的解?这样,函数 的零点就是方程 的实数解,也就是函数 的图象与x轴的公共点的横坐标.新知探究追问1 在函数零点的定义中,蕴含着哪些等价关系?方程 有实数解 函数 有零点 函数 的图象与x轴有公共点.即对于函数 的零点,其代数意义就是 的实数解,其几何意义就是函数 的图象与x轴的公共点.根据函数零点的定义,可以

最近下载