人工智能扩展学习-两层神经网络-异或问题.ppt

想预览更多内容,点击预览全文

申明敬告:

本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。如果您已付费下载过本站文档,您可以点击这里二次下载

文档介绍

人工神经网络基本模型 一、MP模型 MP模型属于一种阈值元件模型,它是由美国Mc Culloch和Pitts提出的最早神经元模型之一。MP模型是大多数神经网络模型的基础。 标准MP模型 wij ——代表神经元i与神经元j之间的连接强度(模拟生物神经元之间突触连接强度),称之为连接权; ui——代表神经元i的活跃值,即神经元状态; vj——代表神经元j的输出,即是神经元i的一个输入; θi——代表神经元i的阈值。 函数f表达了神经元的输入输出特性。在MP模型中,f定义为阶跃函数: 如果把阈值θi看作为一个特殊的权值,则可改写为: 其中,w0i=-θi,v0=1 为用连续型的函数表达神经元的非线性变换能力,常采用s型函数: 该函数的图像如下图所示 MP模型在发表时并没有给出一个学习算法来调整神经元之间的连接权。但是,我们可以根据需要,采用一些常见的算法来调整神经元连接权,以达到学习目的。下面介绍的Hebb学习规则就是一个常见学习算法。 Hebb学习规则 神经网络具有学习功能。对于人工神经网络而言,这种学习归结为神经元连接权的变化。调整wij的原则为:若第i和第j个神经元同时处于兴奋状态,则它们之间的连接应当加强,即: Δwij=αuivj 这一规则与“条件反射”学说一致,并已得到神经细胞学说的证实。 α是表示学习速率的比例常数。 2 感知器模型 感知器是一种早期的神经网络模型,由美国学者F.Rosenblatt于1957年提出.感知器中第一次引入了学习的概念,使人脑所具备的学习功能在基于符号处理的数学到了一定程度的模拟,所以引起了广泛的关注。 简单感知器 简单感知器模型实际上仍然是MP模型的结构,但是它通过采用监督学习来逐步增强模式划分的能力,达到所谓学习的目的。 其结构如下图所示 感知器处理单元对n个输入进行加权和操作v即: 其中,Wi为第i个输入到处理单元的连接权值θ为阈值

您可能关注的文档

最近下载