等腰三角形三线合一典型题型[一].doc
文档名称:

等腰三角形三线合一典型题型[一].doc

格式:doc 大小:0.63MB总页数:14
上传时间:2018-10-26上传者:cby2017
下载源文档需要:12元人民币
点击预览本文档(全文)
内容不如意? 提出您的需求!     如何保证手机能下载并编辑    百万小说图书免费阅读

下载敬告:

本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。如果您已付费下载过本站文档,您可以点这里二次下载
文档介绍:

PAGE

PAGE 6

等腰三角形三线合一 专题训练 姓名

例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD边中点。求证:CE⊥BE。

变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC. (1)求证:AE⊥BE; (2)求证:E是CD的中点; (3)求证:AD+BC=AB.

B

B

C

E

A

D

变3:△ABC是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D为BC的中点,过D作DM⊥DN分别交AB、AC于M、N,求证:(1)DM=DN。

⑵若DM⊥DN分别和BA、AC延长线交于M、N。问DM和DN有何数量关系。

已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.

求证:DE=DF.     (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点. 求证:BE=CF.       

  

             利用面积法证明线段之间的和差关系

1、如图,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F,那么PD+PE与CF相等吗?

变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。

1、已知等腰三角形的两边长分别为4、9,则它的周长为( )

A 17 B 22 C 17或22 D 13

根据等腰三角形的性质寻求规律

例1.在△ABC中,AB=AC,∠1=∠ABC,∠2=∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系? 若∠1=∠ABC,∠2=∠ACB,则
点击预览本文档(全文)
你可能关注的文档
最近下载