log算子的基本原理.doc

想预览更多内容,点击预览全文

申明敬告:

本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。如果您已付费下载过本站文档,您可以点击这里二次下载

文档介绍

基于双边滤波的LOG边缘检测算法

摘要:传统LOG边缘检测算法采用高斯函数滤波时,尽管抑制了噪声,但同时也损坏了部分低强度边缘。针对这一问题,本文提出了结合双边滤波的LOG边缘检测算法,首先采用双边滤波来替代传统LOG算子中的高斯滤波,然后计算平滑后图像的拉普拉斯,最后提取运算后的零交叉点作为图像的边缘。实验表明,改进后的LOG算法能有效抑制噪声,较好地保护边缘,提高了检测精度,减少伪边缘数,相对传统LOG算法具有更好的检测效果。

关键字:LOG算子;双边滤波;边缘保护;边缘检测

1.引言

边缘是指图像局部强度变化最显著的部分,反映了图像中物体最基本的特征,是对图像进行分割、理解以及检索的重要依据。边缘检测一直是图像处理中的热点和难点。

由于数字图像中可能包含不同程度的噪声,使得边缘检测在图像处理中比较困难。经典的边缘检测算子,如Robert、Prewitt、Sobel等,简单、易于实现,但对噪声敏感、抗干扰性能差。Marr边缘检测算法克服了一般微分运算对噪声敏感的缺点,利用能够反映人眼视觉特性的LOG算子对图像的边缘进行检测。该方法在图像边缘检测中具有一定的优势,然而在实际应用中,边缘检测算法仍然存在着一定的问题。比如尺度因子无法自适应调整、模板的尺寸对检测结果影响比较大、零穿越结果无法区分像素反差的大小等。使得噪声对图像仍有较大的影响,众多学者对其进行了研究。杨振亚等人针对LOG算子的缺陷,提出了选择性平滑方式清除图像中的椒盐噪声;提出了依据图像灰度的一阶导数极大值和二阶导数零穿相结合的边缘检测方法,抑制了图像中的大部分其它噪声,并保持了边缘定位精度;还通过用图像灰度共生矩阵的惯性矩特征值,自适应调整高斯空间系数和边缘检测阈值,实现了图像边缘的自动提取。李小红等人分析LOG滤波器边缘检测方法及多尺度特性的理论基础上,提出了一种LOG边缘检测的改进算法。该算法对滤波后的梯

您可能关注的文档

最近下载